3.1.76 \(\int x^5 (d+e x^2) (a+b \sec ^{-1}(c x)) \, dx\) [76]

3.1.76.1 Optimal result
3.1.76.2 Mathematica [A] (verified)
3.1.76.3 Rubi [A] (verified)
3.1.76.4 Maple [A] (verified)
3.1.76.5 Fricas [A] (verification not implemented)
3.1.76.6 Sympy [A] (verification not implemented)
3.1.76.7 Maxima [A] (verification not implemented)
3.1.76.8 Giac [B] (verification not implemented)
3.1.76.9 Mupad [F(-1)]

3.1.76.1 Optimal result

Integrand size = 19, antiderivative size = 196 \[ \int x^5 \left (d+e x^2\right ) \left (a+b \sec ^{-1}(c x)\right ) \, dx=-\frac {b \left (4 c^2 d+3 e\right ) x \sqrt {-1+c^2 x^2}}{24 c^7 \sqrt {c^2 x^2}}-\frac {b \left (8 c^2 d+9 e\right ) x \left (-1+c^2 x^2\right )^{3/2}}{72 c^7 \sqrt {c^2 x^2}}-\frac {b \left (4 c^2 d+9 e\right ) x \left (-1+c^2 x^2\right )^{5/2}}{120 c^7 \sqrt {c^2 x^2}}-\frac {b e x \left (-1+c^2 x^2\right )^{7/2}}{56 c^7 \sqrt {c^2 x^2}}+\frac {1}{6} d x^6 \left (a+b \sec ^{-1}(c x)\right )+\frac {1}{8} e x^8 \left (a+b \sec ^{-1}(c x)\right ) \]

output
1/6*d*x^6*(a+b*arcsec(c*x))+1/8*e*x^8*(a+b*arcsec(c*x))-1/72*b*(8*c^2*d+9* 
e)*x*(c^2*x^2-1)^(3/2)/c^7/(c^2*x^2)^(1/2)-1/120*b*(4*c^2*d+9*e)*x*(c^2*x^ 
2-1)^(5/2)/c^7/(c^2*x^2)^(1/2)-1/56*b*e*x*(c^2*x^2-1)^(7/2)/c^7/(c^2*x^2)^ 
(1/2)-1/24*b*(4*c^2*d+3*e)*x*(c^2*x^2-1)^(1/2)/c^7/(c^2*x^2)^(1/2)
 
3.1.76.2 Mathematica [A] (verified)

Time = 0.19 (sec) , antiderivative size = 118, normalized size of antiderivative = 0.60 \[ \int x^5 \left (d+e x^2\right ) \left (a+b \sec ^{-1}(c x)\right ) \, dx=\frac {1}{24} a x^6 \left (4 d+3 e x^2\right )-\frac {b \sqrt {1-\frac {1}{c^2 x^2}} x \left (144 e+8 c^2 \left (28 d+9 e x^2\right )+2 c^4 \left (56 d x^2+27 e x^4\right )+c^6 \left (84 d x^4+45 e x^6\right )\right )}{2520 c^7}+\frac {1}{24} b x^6 \left (4 d+3 e x^2\right ) \sec ^{-1}(c x) \]

input
Integrate[x^5*(d + e*x^2)*(a + b*ArcSec[c*x]),x]
 
output
(a*x^6*(4*d + 3*e*x^2))/24 - (b*Sqrt[1 - 1/(c^2*x^2)]*x*(144*e + 8*c^2*(28 
*d + 9*e*x^2) + 2*c^4*(56*d*x^2 + 27*e*x^4) + c^6*(84*d*x^4 + 45*e*x^6)))/ 
(2520*c^7) + (b*x^6*(4*d + 3*e*x^2)*ArcSec[c*x])/24
 
3.1.76.3 Rubi [A] (verified)

Time = 0.37 (sec) , antiderivative size = 161, normalized size of antiderivative = 0.82, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.263, Rules used = {5761, 27, 354, 86, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^5 \left (d+e x^2\right ) \left (a+b \sec ^{-1}(c x)\right ) \, dx\)

\(\Big \downarrow \) 5761

\(\displaystyle -\frac {b c x \int \frac {x^5 \left (3 e x^2+4 d\right )}{24 \sqrt {c^2 x^2-1}}dx}{\sqrt {c^2 x^2}}+\frac {1}{6} d x^6 \left (a+b \sec ^{-1}(c x)\right )+\frac {1}{8} e x^8 \left (a+b \sec ^{-1}(c x)\right )\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {b c x \int \frac {x^5 \left (3 e x^2+4 d\right )}{\sqrt {c^2 x^2-1}}dx}{24 \sqrt {c^2 x^2}}+\frac {1}{6} d x^6 \left (a+b \sec ^{-1}(c x)\right )+\frac {1}{8} e x^8 \left (a+b \sec ^{-1}(c x)\right )\)

\(\Big \downarrow \) 354

\(\displaystyle -\frac {b c x \int \frac {x^4 \left (3 e x^2+4 d\right )}{\sqrt {c^2 x^2-1}}dx^2}{48 \sqrt {c^2 x^2}}+\frac {1}{6} d x^6 \left (a+b \sec ^{-1}(c x)\right )+\frac {1}{8} e x^8 \left (a+b \sec ^{-1}(c x)\right )\)

\(\Big \downarrow \) 86

\(\displaystyle -\frac {b c x \int \left (\frac {3 e \left (c^2 x^2-1\right )^{5/2}}{c^6}+\frac {\left (4 d c^2+9 e\right ) \left (c^2 x^2-1\right )^{3/2}}{c^6}+\frac {\left (8 d c^2+9 e\right ) \sqrt {c^2 x^2-1}}{c^6}+\frac {4 d c^2+3 e}{c^6 \sqrt {c^2 x^2-1}}\right )dx^2}{48 \sqrt {c^2 x^2}}+\frac {1}{6} d x^6 \left (a+b \sec ^{-1}(c x)\right )+\frac {1}{8} e x^8 \left (a+b \sec ^{-1}(c x)\right )\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {1}{6} d x^6 \left (a+b \sec ^{-1}(c x)\right )+\frac {1}{8} e x^8 \left (a+b \sec ^{-1}(c x)\right )-\frac {b c x \left (\frac {2 \left (c^2 x^2-1\right )^{5/2} \left (4 c^2 d+9 e\right )}{5 c^8}+\frac {2 \left (c^2 x^2-1\right )^{3/2} \left (8 c^2 d+9 e\right )}{3 c^8}+\frac {2 \sqrt {c^2 x^2-1} \left (4 c^2 d+3 e\right )}{c^8}+\frac {6 e \left (c^2 x^2-1\right )^{7/2}}{7 c^8}\right )}{48 \sqrt {c^2 x^2}}\)

input
Int[x^5*(d + e*x^2)*(a + b*ArcSec[c*x]),x]
 
output
-1/48*(b*c*x*((2*(4*c^2*d + 3*e)*Sqrt[-1 + c^2*x^2])/c^8 + (2*(8*c^2*d + 9 
*e)*(-1 + c^2*x^2)^(3/2))/(3*c^8) + (2*(4*c^2*d + 9*e)*(-1 + c^2*x^2)^(5/2 
))/(5*c^8) + (6*e*(-1 + c^2*x^2)^(7/2))/(7*c^8)))/Sqrt[c^2*x^2] + (d*x^6*( 
a + b*ArcSec[c*x]))/6 + (e*x^8*(a + b*ArcSec[c*x]))/8
 

3.1.76.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 86
Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_ 
.), x_] :> Int[ExpandIntegrand[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; 
 FreeQ[{a, b, c, d, e, f, n}, x] && ((ILtQ[n, 0] && ILtQ[p, 0]) || EqQ[p, 1 
] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p 
+ 1, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))
 

rule 354
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.), x_S 
ymbol] :> Simp[1/2   Subst[Int[x^((m - 1)/2)*(a + b*x)^p*(c + d*x)^q, x], x 
, x^2], x] /; FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && IntegerQ 
[(m - 1)/2]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 5761
Int[((a_.) + ArcSec[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x 
_)^2)^(p_.), x_Symbol] :> With[{u = IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Sim 
p[(a + b*ArcSec[c*x])   u, x] - Simp[b*c*(x/Sqrt[c^2*x^2])   Int[SimplifyIn 
tegrand[u/(x*Sqrt[c^2*x^2 - 1]), x], x], x]] /; FreeQ[{a, b, c, d, e, f, m, 
 p}, x] && ((IGtQ[p, 0] &&  !(ILtQ[(m - 1)/2, 0] && GtQ[m + 2*p + 3, 0])) | 
| (IGtQ[(m + 1)/2, 0] &&  !(ILtQ[p, 0] && GtQ[m + 2*p + 3, 0])) || (ILtQ[(m 
 + 2*p + 1)/2, 0] &&  !ILtQ[(m - 1)/2, 0]))
 
3.1.76.4 Maple [A] (verified)

Time = 0.62 (sec) , antiderivative size = 139, normalized size of antiderivative = 0.71

method result size
parts \(a \left (\frac {1}{8} e \,x^{8}+\frac {1}{6} d \,x^{6}\right )+\frac {b \left (\frac {c^{6} \operatorname {arcsec}\left (c x \right ) e \,x^{8}}{8}+\frac {\operatorname {arcsec}\left (c x \right ) d \,x^{6} c^{6}}{6}-\frac {\left (c^{2} x^{2}-1\right ) \left (45 c^{6} e \,x^{6}+84 c^{6} d \,x^{4}+54 c^{4} e \,x^{4}+112 c^{4} d \,x^{2}+72 c^{2} e \,x^{2}+224 c^{2} d +144 e \right )}{2520 c^{3} \sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}\, x}\right )}{c^{6}}\) \(139\)
derivativedivides \(\frac {\frac {a \left (\frac {1}{6} c^{8} d \,x^{6}+\frac {1}{8} e \,c^{8} x^{8}\right )}{c^{2}}+\frac {b \left (\frac {\operatorname {arcsec}\left (c x \right ) d \,c^{8} x^{6}}{6}+\frac {\operatorname {arcsec}\left (c x \right ) e \,c^{8} x^{8}}{8}-\frac {\left (c^{2} x^{2}-1\right ) \left (45 c^{6} e \,x^{6}+84 c^{6} d \,x^{4}+54 c^{4} e \,x^{4}+112 c^{4} d \,x^{2}+72 c^{2} e \,x^{2}+224 c^{2} d +144 e \right )}{2520 \sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}\, c x}\right )}{c^{2}}}{c^{6}}\) \(152\)
default \(\frac {\frac {a \left (\frac {1}{6} c^{8} d \,x^{6}+\frac {1}{8} e \,c^{8} x^{8}\right )}{c^{2}}+\frac {b \left (\frac {\operatorname {arcsec}\left (c x \right ) d \,c^{8} x^{6}}{6}+\frac {\operatorname {arcsec}\left (c x \right ) e \,c^{8} x^{8}}{8}-\frac {\left (c^{2} x^{2}-1\right ) \left (45 c^{6} e \,x^{6}+84 c^{6} d \,x^{4}+54 c^{4} e \,x^{4}+112 c^{4} d \,x^{2}+72 c^{2} e \,x^{2}+224 c^{2} d +144 e \right )}{2520 \sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}\, c x}\right )}{c^{2}}}{c^{6}}\) \(152\)

input
int(x^5*(e*x^2+d)*(a+b*arcsec(c*x)),x,method=_RETURNVERBOSE)
 
output
a*(1/8*e*x^8+1/6*d*x^6)+b/c^6*(1/8*c^6*arcsec(c*x)*e*x^8+1/6*arcsec(c*x)*d 
*x^6*c^6-1/2520/c^3*(c^2*x^2-1)*(45*c^6*e*x^6+84*c^6*d*x^4+54*c^4*e*x^4+11 
2*c^4*d*x^2+72*c^2*e*x^2+224*c^2*d+144*e)/((c^2*x^2-1)/c^2/x^2)^(1/2)/x)
 
3.1.76.5 Fricas [A] (verification not implemented)

Time = 0.32 (sec) , antiderivative size = 128, normalized size of antiderivative = 0.65 \[ \int x^5 \left (d+e x^2\right ) \left (a+b \sec ^{-1}(c x)\right ) \, dx=\frac {315 \, a c^{8} e x^{8} + 420 \, a c^{8} d x^{6} + 105 \, {\left (3 \, b c^{8} e x^{8} + 4 \, b c^{8} d x^{6}\right )} \operatorname {arcsec}\left (c x\right ) - {\left (45 \, b c^{6} e x^{6} + 6 \, {\left (14 \, b c^{6} d + 9 \, b c^{4} e\right )} x^{4} + 224 \, b c^{2} d + 8 \, {\left (14 \, b c^{4} d + 9 \, b c^{2} e\right )} x^{2} + 144 \, b e\right )} \sqrt {c^{2} x^{2} - 1}}{2520 \, c^{8}} \]

input
integrate(x^5*(e*x^2+d)*(a+b*arcsec(c*x)),x, algorithm="fricas")
 
output
1/2520*(315*a*c^8*e*x^8 + 420*a*c^8*d*x^6 + 105*(3*b*c^8*e*x^8 + 4*b*c^8*d 
*x^6)*arcsec(c*x) - (45*b*c^6*e*x^6 + 6*(14*b*c^6*d + 9*b*c^4*e)*x^4 + 224 
*b*c^2*d + 8*(14*b*c^4*d + 9*b*c^2*e)*x^2 + 144*b*e)*sqrt(c^2*x^2 - 1))/c^ 
8
 
3.1.76.6 Sympy [A] (verification not implemented)

Time = 4.04 (sec) , antiderivative size = 364, normalized size of antiderivative = 1.86 \[ \int x^5 \left (d+e x^2\right ) \left (a+b \sec ^{-1}(c x)\right ) \, dx=\frac {a d x^{6}}{6} + \frac {a e x^{8}}{8} + \frac {b d x^{6} \operatorname {asec}{\left (c x \right )}}{6} + \frac {b e x^{8} \operatorname {asec}{\left (c x \right )}}{8} - \frac {b d \left (\begin {cases} \frac {x^{4} \sqrt {c^{2} x^{2} - 1}}{5 c} + \frac {4 x^{2} \sqrt {c^{2} x^{2} - 1}}{15 c^{3}} + \frac {8 \sqrt {c^{2} x^{2} - 1}}{15 c^{5}} & \text {for}\: \left |{c^{2} x^{2}}\right | > 1 \\\frac {i x^{4} \sqrt {- c^{2} x^{2} + 1}}{5 c} + \frac {4 i x^{2} \sqrt {- c^{2} x^{2} + 1}}{15 c^{3}} + \frac {8 i \sqrt {- c^{2} x^{2} + 1}}{15 c^{5}} & \text {otherwise} \end {cases}\right )}{6 c} - \frac {b e \left (\begin {cases} \frac {x^{6} \sqrt {c^{2} x^{2} - 1}}{7 c} + \frac {6 x^{4} \sqrt {c^{2} x^{2} - 1}}{35 c^{3}} + \frac {8 x^{2} \sqrt {c^{2} x^{2} - 1}}{35 c^{5}} + \frac {16 \sqrt {c^{2} x^{2} - 1}}{35 c^{7}} & \text {for}\: \left |{c^{2} x^{2}}\right | > 1 \\\frac {i x^{6} \sqrt {- c^{2} x^{2} + 1}}{7 c} + \frac {6 i x^{4} \sqrt {- c^{2} x^{2} + 1}}{35 c^{3}} + \frac {8 i x^{2} \sqrt {- c^{2} x^{2} + 1}}{35 c^{5}} + \frac {16 i \sqrt {- c^{2} x^{2} + 1}}{35 c^{7}} & \text {otherwise} \end {cases}\right )}{8 c} \]

input
integrate(x**5*(e*x**2+d)*(a+b*asec(c*x)),x)
 
output
a*d*x**6/6 + a*e*x**8/8 + b*d*x**6*asec(c*x)/6 + b*e*x**8*asec(c*x)/8 - b* 
d*Piecewise((x**4*sqrt(c**2*x**2 - 1)/(5*c) + 4*x**2*sqrt(c**2*x**2 - 1)/( 
15*c**3) + 8*sqrt(c**2*x**2 - 1)/(15*c**5), Abs(c**2*x**2) > 1), (I*x**4*s 
qrt(-c**2*x**2 + 1)/(5*c) + 4*I*x**2*sqrt(-c**2*x**2 + 1)/(15*c**3) + 8*I* 
sqrt(-c**2*x**2 + 1)/(15*c**5), True))/(6*c) - b*e*Piecewise((x**6*sqrt(c* 
*2*x**2 - 1)/(7*c) + 6*x**4*sqrt(c**2*x**2 - 1)/(35*c**3) + 8*x**2*sqrt(c* 
*2*x**2 - 1)/(35*c**5) + 16*sqrt(c**2*x**2 - 1)/(35*c**7), Abs(c**2*x**2) 
> 1), (I*x**6*sqrt(-c**2*x**2 + 1)/(7*c) + 6*I*x**4*sqrt(-c**2*x**2 + 1)/( 
35*c**3) + 8*I*x**2*sqrt(-c**2*x**2 + 1)/(35*c**5) + 16*I*sqrt(-c**2*x**2 
+ 1)/(35*c**7), True))/(8*c)
 
3.1.76.7 Maxima [A] (verification not implemented)

Time = 0.21 (sec) , antiderivative size = 185, normalized size of antiderivative = 0.94 \[ \int x^5 \left (d+e x^2\right ) \left (a+b \sec ^{-1}(c x)\right ) \, dx=\frac {1}{8} \, a e x^{8} + \frac {1}{6} \, a d x^{6} + \frac {1}{90} \, {\left (15 \, x^{6} \operatorname {arcsec}\left (c x\right ) - \frac {3 \, c^{4} x^{5} {\left (-\frac {1}{c^{2} x^{2}} + 1\right )}^{\frac {5}{2}} + 10 \, c^{2} x^{3} {\left (-\frac {1}{c^{2} x^{2}} + 1\right )}^{\frac {3}{2}} + 15 \, x \sqrt {-\frac {1}{c^{2} x^{2}} + 1}}{c^{5}}\right )} b d + \frac {1}{280} \, {\left (35 \, x^{8} \operatorname {arcsec}\left (c x\right ) - \frac {5 \, c^{6} x^{7} {\left (-\frac {1}{c^{2} x^{2}} + 1\right )}^{\frac {7}{2}} + 21 \, c^{4} x^{5} {\left (-\frac {1}{c^{2} x^{2}} + 1\right )}^{\frac {5}{2}} + 35 \, c^{2} x^{3} {\left (-\frac {1}{c^{2} x^{2}} + 1\right )}^{\frac {3}{2}} + 35 \, x \sqrt {-\frac {1}{c^{2} x^{2}} + 1}}{c^{7}}\right )} b e \]

input
integrate(x^5*(e*x^2+d)*(a+b*arcsec(c*x)),x, algorithm="maxima")
 
output
1/8*a*e*x^8 + 1/6*a*d*x^6 + 1/90*(15*x^6*arcsec(c*x) - (3*c^4*x^5*(-1/(c^2 
*x^2) + 1)^(5/2) + 10*c^2*x^3*(-1/(c^2*x^2) + 1)^(3/2) + 15*x*sqrt(-1/(c^2 
*x^2) + 1))/c^5)*b*d + 1/280*(35*x^8*arcsec(c*x) - (5*c^6*x^7*(-1/(c^2*x^2 
) + 1)^(7/2) + 21*c^4*x^5*(-1/(c^2*x^2) + 1)^(5/2) + 35*c^2*x^3*(-1/(c^2*x 
^2) + 1)^(3/2) + 35*x*sqrt(-1/(c^2*x^2) + 1))/c^7)*b*e
 
3.1.76.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 13018 vs. \(2 (168) = 336\).

Time = 0.47 (sec) , antiderivative size = 13018, normalized size of antiderivative = 66.42 \[ \int x^5 \left (d+e x^2\right ) \left (a+b \sec ^{-1}(c x)\right ) \, dx=\text {Too large to display} \]

input
integrate(x^5*(e*x^2+d)*(a+b*arcsec(c*x)),x, algorithm="giac")
 
output
1/2520*(420*b*c^2*d*arccos(1/(c*x))/(c^9 + 8*c^9*(1/(c^2*x^2) - 1)/(1/(c*x 
) + 1)^2 + 28*c^9*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + 56*c^9*(1/(c^2*x^2 
) - 1)^3/(1/(c*x) + 1)^6 + 70*c^9*(1/(c^2*x^2) - 1)^4/(1/(c*x) + 1)^8 + 56 
*c^9*(1/(c^2*x^2) - 1)^5/(1/(c*x) + 1)^10 + 28*c^9*(1/(c^2*x^2) - 1)^6/(1/ 
(c*x) + 1)^12 + 8*c^9*(1/(c^2*x^2) - 1)^7/(1/(c*x) + 1)^14 + c^9*(1/(c^2*x 
^2) - 1)^8/(1/(c*x) + 1)^16) + 420*a*c^2*d/(c^9 + 8*c^9*(1/(c^2*x^2) - 1)/ 
(1/(c*x) + 1)^2 + 28*c^9*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1)^4 + 56*c^9*(1/( 
c^2*x^2) - 1)^3/(1/(c*x) + 1)^6 + 70*c^9*(1/(c^2*x^2) - 1)^4/(1/(c*x) + 1) 
^8 + 56*c^9*(1/(c^2*x^2) - 1)^5/(1/(c*x) + 1)^10 + 28*c^9*(1/(c^2*x^2) - 1 
)^6/(1/(c*x) + 1)^12 + 8*c^9*(1/(c^2*x^2) - 1)^7/(1/(c*x) + 1)^14 + c^9*(1 
/(c^2*x^2) - 1)^8/(1/(c*x) + 1)^16) - 1680*b*c^2*d*(1/(c^2*x^2) - 1)*arcco 
s(1/(c*x))/((c^9 + 8*c^9*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 28*c^9*(1/(c^ 
2*x^2) - 1)^2/(1/(c*x) + 1)^4 + 56*c^9*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6 
 + 70*c^9*(1/(c^2*x^2) - 1)^4/(1/(c*x) + 1)^8 + 56*c^9*(1/(c^2*x^2) - 1)^5 
/(1/(c*x) + 1)^10 + 28*c^9*(1/(c^2*x^2) - 1)^6/(1/(c*x) + 1)^12 + 8*c^9*(1 
/(c^2*x^2) - 1)^7/(1/(c*x) + 1)^14 + c^9*(1/(c^2*x^2) - 1)^8/(1/(c*x) + 1) 
^16)*(1/(c*x) + 1)^2) - 840*b*c^2*d*sqrt(-1/(c^2*x^2) + 1)/((c^9 + 8*c^9*( 
1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 28*c^9*(1/(c^2*x^2) - 1)^2/(1/(c*x) + 1 
)^4 + 56*c^9*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6 + 70*c^9*(1/(c^2*x^2) - 1 
)^4/(1/(c*x) + 1)^8 + 56*c^9*(1/(c^2*x^2) - 1)^5/(1/(c*x) + 1)^10 + 28*...
 
3.1.76.9 Mupad [F(-1)]

Timed out. \[ \int x^5 \left (d+e x^2\right ) \left (a+b \sec ^{-1}(c x)\right ) \, dx=\int x^5\,\left (e\,x^2+d\right )\,\left (a+b\,\mathrm {acos}\left (\frac {1}{c\,x}\right )\right ) \,d x \]

input
int(x^5*(d + e*x^2)*(a + b*acos(1/(c*x))),x)
 
output
int(x^5*(d + e*x^2)*(a + b*acos(1/(c*x))), x)